Emplois actuels liés à Phd Marie Curie Moira - Leuven - Siemens Digital Industries Software

  • Phd Marie Curie Moira

    Il y a 4 mois


    Leuven, Belgique Siemens Digital Industries Software Temps plein

    Marie Curie Early Stage Researcher - MOIRA - Automatic Multi-Sensor Validation Methods Siemens Digital Industries Software (DISW), headquartered in Leuven, Belgium, has an open position for an early-stage researcher (ESR) in frame of the European Training Network on Monitoring Large-Scale Complex Systems (“MOIRA”), funded by the European Commission...


  • Leuven, Belgique Siemens Digital Industries Software Temps plein

    **PhD position in the field of Sound Quality of Acoustic Metamaterials** Siemens Industry Software NV (SISW) is a leading research-driven company developing simulation and measurement tools for industry. This includes software, hardware and services for the design, optimisation, manufacturing and monitoring of machines, vehicles, components and materials....


  • Leuven, Belgique KU Leuven Temps plein

    •Requirement: Master's degree in Chemical Engineering (or related) with strong overall marks•Knowledge of crystallization will be regarded as a plus•Adequate English (written and verbal communication) for scientific interactions required•Strong motivation is a must•Willingness to work at interdisciplinary boundariesImportantly, applicants must also...


  • Leuven, Belgique KU Leuven Temps plein

    We are looking for highly motivated Ph.D. researchers with interests in hardware, software, modelling, simulations, or algorithms. The applicant should hold a master's degree in electrical engineering, Telecommunication Engineering, or relevant fields. The applicant should also meet the minimum eligibility criteria for enrolling as a Ph.D. student at KU...

Phd Marie Curie Moira

Il y a 5 mois


Leuven, Belgique Siemens Digital Industries Software Temps plein

**Job Family**: Internal Services

**Req ID**: 364338

Marie Curie Early Stage Researcher - MOIRA - Automatic Multi-Sensor Validation Methods

Siemens Digital Industries Software (DISW), headquartered in Leuven, Belgium, has an open position for an early-stage researcher (ESR) in frame of the European Training Network on Monitoring Large-Scale Complex Systems (“MOIRA”), funded by the European Commission through the H2020 “Marie Skłodowska-Curie Innovative Training Networks” (ITN) program.

The objective of the MOIRA project is to develop the next generation of knowledge discovery methodologies, algorithms and technologies, so enabling data-driven, plant-wide fleet monitoring, with the focus on real-time diagnostics and prognostics. This objective will be achieved by having a collaborative network of ESRs hosted by top European universities, research institutes, wind-turbine and plant operators, OEMs and industrial partners with an expertise in mechanical engineering, computer science, signal processing, vibrations, inverse problems, operations maintenance, data analytics and networks.

The ESR connected to this vacancy will become part of the research team of the SISW TEST division and will collaborate closely with the SISW staff as well as other international visiting researchers and students. Moreover, the ESR will also have the opportunity to enroll as PhD student in the doctoral school of academic partner KU Leuven (KUL).

**ESR Project Description**:
The ESR will research methods that enable the automatic detection of “incorrect” sensor data. Sensors are exposed to tough operating conditions in many industrial environments (e.g., excavation machines driving on off-road tracks, gantry cranes in steel mills, etc.). Therefore, a common problem is the occurrence of “measurement anomalies”, i.e., where part of the data is incorrect in the sense that there are some deviations from what was intended to be measured. Examples of measurement anomalies with particular shapes are dropouts, offsets, drifts and spikes, but the measurement anomaly can also be a more subtle problem with the data. A sophisticated automatic sensor validation method is thus highly sought after.

The ESR will investigate machine-learning methods that are trained to recognize incorrect sensor data. A systematic approach will be followed: in the first stage, a supervised learning technique will be embraced, whereby it is assumed that an historical dataset with fully labelled examples is available. As this assumption might not prove to be practically realizable in many cases, an unsupervised anomaly-detection approach will be investigated in the second stage. Such an approach does not require labelled data, but is typically more difficult to implement effectively compared to a supervised approach. An exciting third alternative that will be investigated is a semi-supervised approach, where a small labelled dataset (e.g., acquired from expert user feedback) is available in addition to the larger unlabelled dataset. Besides the detailed investigation outlined above (supervised - unsupervised - semi-supervised), a particular focus point will be to use the fact that there will be multiple sensors, i.e., there is a certain redundancy in the measurement setup so that some sensors will be measuring related quantities. While measurement anomalies are non-physical events that occur at random times (so that they will likely not be observed in multiple sensor channels), real physical events likely affect multiple (closely located) sensors. A comparison between sensor pairs (e.g., linear or nonlinear correlation analysis) could thus be exploited so to better detect the measurement anomalies (for example, to distinguish an incorrect measurement spike from a true physical shock event in the data).

Upon successful completion of the Operations Training, Sales Executives will then begin their Sales courses. During Phase II you will have the opportunity to take part in the Sales Incentive Plan. On-The-Job Activities will focus on: Providing support through estimations, credit checks, market research, etc, and developing basic sales techniques to sell products/services/solutions to established or prospective customers. Under senior mentorship, you may be responsible for the following: Lead and expand your assigned territory. Call on prospective/established customers, providing technical and administrative product information and/or demonstration. Team-sell with colleagues as appropriate. Perform needs assessments and develop sales proposals, estimates, specifications and presentations. Work with operations, finance, legal and other internal and external clients as needed to acquire the sale. Begin integrating your new skills to reach target sales goals; Follow through on sold projects to ensure satisfactory completion.

The remuneration is generous and will be in line with the EC rules for Marie Curie grant holders. It consists of a salary aug